
Comment installer un résolveur DNS local avec Dnsmasq sur
Rocky Linux
Dnsmasq	is	a	small	and	lightweight	DNS	server	for	your	local	environment.	It	can	be	used	to	provide	a	DNS	Server,	
DHCP	Server,	and	a	TFTP	Server.	As	for	the	DNS	Server,	the	Dnsmasq	can	be	used	as	a	forwarder,	recursive	DNS	
Server,	and	DNS	caching	system.	It	also	loads	DNS	contents	from	the	/etc/hosts	file,	which	allows	you	to	set	up	domain	
names	for	local	hostnames.

Dnsmasq	is	designed	to	be	lightweight	with	a	small	footprint,	suitable	for	low-resource	devices	such	as	Routers	and	
Firewalls.	Dnsmasq	has	low	system	requirements	and	consumes	low	resources.	It	can	be	run	on	Linux,	BSDs,	Android,	
and	macOS.

This	tutorial	will	cover	installing	and	setting	up	a	local	DNS	Server	with	Dnsmasq	on	a	Rocky	Linux	9	server.	You'll	
install	Dnsmasq	and	set	up	the	local	DNS	Server	with	some	additional	features,	such	as	enabling	local	domain	names,	
setting	up	sub-domains	via	/etc/hosts	file,	and	enabling	the	DNS	cache	for	faster	access.	Lastly,	you'll	enable	the	DHCP	
server	via	Dnsmasq.

You'll	also	learn	how	to	set	up	client	machines	to	use	the	local	DNS	Server	as	the	primary	DNS	resolver.

Prerequisites
There	are	several	prerequisites	that	you	must	have	before	you	get	started.	Below	are	the	lists	of	prerequisites:

A	Rocky	Linux	9	server	-	This	example	uses	the	Rocky	Linux	with	hostname	'dnsmasq-rocky'	and	the	IP	address
'192.168.5.50'.
A	non-root	user	with	sudo/root	administrator	privileges.
SELinux	is	running	with	'permissive'	mode.

For	client	machines,	you	can	use	any	Linux	distribution.	You	can	use	Debian-based	or	RHEL-based	distributions	as	for
client	machines.

Prepare	System
On	RHEL-based	operating	systems,	the	default	DNS	resolver	'/etc/resolv.conf'	is	generated	by	the	NetworkManager
service.	Before	you	install	Dnsmasq,	you'll	set	up	a	static	DNS	resolver	via	/etc/resolv.conf	file	and	disable	the	DNS
resolver	from	the	NetworkManager	service.

To	start,	open	the	NetworkManager	config	file	/etc/NetworkManager/NetworkManager.conf	using	the	below	nano
editor	command.

sudo	nano	/etc/NetworkManager/NetworkManager.conf

Add	the	line	'dns=none'	within	the	section	'[section]'.

[main]
dns=none

Save	the	file	and	exit	the	editor	when	you're	finished.

Next,	open	the	DNS	resolver	config	file	'/etc/resolv.conf'	using	the	nano	editor	command	below.

sudo	nano	/etc/resolv.conf

Delete	all	available	lines	and	replace	them	with	the	following	lines.	With	this,	you'll	be	using	the	Cloudflare	and	Google
public	DNS	as	the	main	DNS	server.

nameserver	1.1.1.1
nameserver	8.8.8.8

Save	the	file	and	exit	when	you're	done.

Lastly,	run	the	below	systemctl	command	to	restart	the	NetworkManager	and	apply	the	changes.

sudo	systemctl	restart	NetworkManager

With	these	settings	finished,	your	DNS	resolver	will	not	be	changed	by	the	NetworkManager	service	and	you	can	add	or
change	the	DNS	resolver	at	any	time.

In	the	next	steps,	you'll	start	the	Dnsmasq	installation	and	configuration	on	Rocky	Linux.

Installing	Dnsmasq	on	Rocky	Linux
In	this	step,	you'll	install	the	Dnsmasq	package	on	a	Rocky	Linux	server.	Then,	you'll	start	and	enable	the	Dnsmasq
service	to	run	upon	the	system	bootup.

By	default,	the	'dnsmasq'	package	is	available	on	the	Rocky	Linux	AppStream	repository.	Run	the	below	dnf	command
to	get	information	about	the	'dnsmasq'	package.

sudo	dnf	info	dnsmasq

The	Dnsmasq	v2.85	is	available	on	Rocky	Linux	9	at	the	time	of	this	writing.

Now	run	the	below	command	to	install	Dnsmasq.	Input	y	when	prompted	for	the	confirmation,	then	press	ENTER	to
proceed.

sudo	dnf	install	dnsmasq	dnsmasq-utils

The	Dnsmasq	installation	should	now	be	started.

After	installing	the	Dnsmasq,	run	the	below	systemctl	command	to	start	and	enable	the	'dnsmasq'	service.	With	the
below	command	executed,	the	'dnsmasq'	service	should	now	be	running	and	enabled,	which	will	start	automatically
upon	the	bootup.

sudo	systemctl	start	dnsmasq
sudo	systemctl	enable	dnsmasq

Verify	the	'dnsmasq'	service	via	the	systemctl	command	utility	below.

sudo	systemctl	status	dnsmasq

You'll	receive	the	output	like	this	-	The	'dnsmasq'	service	is	currently	running,	enabled,	and	will	be	run	automatically	at
bootup.

With	the	Dnsmasq	is	installed	and	running,	you'll	next	start	the	configuration	of	Dnsmasq	to	run	as	a	local	DNS	Server.

Configuring	Dnsmasq
In	this	step,	you'll	set	up	the	Dnsmasq	as	the	local	DNS	Server	with	some	enabled	features	such	as	cache	DNS,	and
DHCP	server,	and	configure	the	domain	name	and	sub-domains	for	local	applications.	This	allows	your	application	to	be
accessible	via	the	local	domain	names/sub-domains	such	as	'db1.hwdomain.io',	'app.hwdomain.io',	and	many	more.

To	start,	run	the	below	command	to	copy	the	default	Dnsmasq	config	file	to	'/etc/dnsmasq.conf.orig',	then	open	the
original	Dnsmasq	configuration	file	'/etc/dnsmasq.conf'	using	the	below	nano	editor	command.

sudo	cp	/etc/dnsmasq.conf{,.orig}
sudo	nano	/etc/dnsmasq.conf

Add	the	following	lines	to	the	file.

#	dnsmasq	run	on	UDP	port	53
#	with	IP	address	localhost	and	192.168.5.50
#	and	network	interface	eth1
port=53
listen-address=127.0.0.1,192.168.5.50
interface=eth1

#	disable	forwarding	of	non-routed	address
#	disable	forwarding	names	without	the	main	domain.com
#	automatically	append	the	domain	part	to	simple	names
#	disable	dnsmasq	to	read	/etc/resolv.conf	file
domain-needed
bogus-priv
expand-hosts
no-resolv

#	upstream	DNS	server	for	non-local	domains
#	using	Cloudflare	and	google	public	DNS
server=1.1.1.1
server=8.8.8.8

#	define	the	domain	for	dnsmasq
domain=hwdomain.io
address=/hwdomain.io/192.168.5.50

#	enable	DNS	Cache	and	adjust	cache-size
cache-size=10000

#	enable	dhcp	via	dnsmasq
#	define	lease	db	file
#	make	the	dhcp	server	as	an	authoritative
dhcp-range=192.168.5.100,192.168.5.150,12h
dhcp-leasefile=/var/lib/dnsmasq/dnsmasq.leases
dhcp-authoritative

Save	the	file	and	exit	the	editor	when	you're	finished.

Below	is	the	detailed	options	that	you'll	be	using	for	your	Dnsmasq	installation:

port:	which	port	you	will	be	using	to	run	the	Dnsmasq.
listen-address:	which	IP	address	you'll	be	using	to	run	the	Dnsmasq.	You	can	use	multiple	IP	addresses.
interface:	which	interface	the	Dnsmasq	will	be	bind	and	running.
domain-needed:	disable	forwarding	names	without	the	main	domain	address.	You	can	access	like	'mysql1'	host
unless	you	give	the	full	with	local	domain	such	as	'mysql1.hwdomain.io'.
bogus-priv:	disable	forwarding	for	non-routed	addresses.
expand-hosts:	automatically	append	the	local	domain	part	to	simple	names.
no-resolv:	ignore	the	'/etc/resolv.conf'	file	on	the	server.

server:	define	the	upstream	DNS	Server	that	you'll	be	using	for	non-local	addresses	or	domains.	This	example	uses
the	Public	DNS	Server	by	Cloudflare	and	Google.
domain:	define	the	domain	name	for	the	Dnsmasq	server.	In	this	example,	the	Dnsmasq	server	will	get	the	local
domain	hwdomain.io.
address:	define	which	IP	address	for	the	domain	name	on	Dnsmasq.	In	this	example,	the	domain	hwdomain.io	will
be	resolved	to	the	IP	address	192.168.5.50.
cache-size:	enabled	DNS	cache	on	Dnsmasq.	Be	sure	to	adjust	the	size,	which	increases	the	performance	and
speed.
dhcp-range:	enable	the	DHCP	server	via	the	Dnsmasq.	Adjust	the	IP	address	pool	for	your	network	and	lease
time.
dhcp-leasefile:	define	the	file	that	will	be	sued	to	store	the	DHCP	lease.
dhcp-authoritative:	make	the	DHCP	server	as	authoritative.

Next,	open	the	'/etc/hosts'	file	using	the	below	nano	editor	command.	You'll	now	define	some	sub-domains	for
applications	in	your	local	environment.

sudo	nano	/etc/hosts

Add	the	following	lines	to	the	file.	In	this	example,	you'll	create	three	sub-domains	wiki,	mysql,	and	files.	Each	sub-
domain	will	follow	the	main	domain	of	the	Dnsmasq	server	'hwdomain.io'	and	point	to	a	specific	IP	address.

The	subdomain	wiki.hwdomain.io	will	be	pointed	to	IP	address	'192.168.5.10',	the	sub-domain	'mysql.hwdomain.io'
is	pointed	to	IP	address	'192.168.5.25',	and	the	'files.hwdomain.io'	will	be	pointed	to	IP	address	'192.168.5.30'.

192.168.5.10	wiki
192.168.5.25	mysql
192.168.5.30	files	

Save	the	file	and	exit	the	editor	when	you're	finished.

Now	open	the	DNS	resolver	config	file	'/etc/resolv.conf'	using	the	below	nano	editor	command.

sudo	nano	/etc/resolv.conf

Add	the	following	lines	to	the	top	of	the	file.	Be	sure	to	change	the	IP	address	with	the	Dnsmasq	server	IP	address.

nameserver	127.0.0.1
nameserver	192.168.5.50

Save	the	file	and	exit	the	editor	when	finished.

Now	run	the	below	command	to	verify	the	Dnsmasq	configuration	and	ensure	that	you	have	the	proper	configuration.
You'll	receive	the	output	such	as	'dnsmasq:	syntax	check	OK'.

sudo	dnsmasq	--test

Lastly,	run	the	below	systemctl	command	utility	to	restart	the	'dnsmasq'	service	and	apply	the	changes.

sudo	systemctl	restart	dnsmasq

At	this	point,	you've	finished	the	configuration	of	Dnsmasq	as	the	local	DNS	Server	on	the	Rocky	Linux	system.	You've
also	configured	the	domain	name	for	the	Dnsmasq	server	and	some	sub-domains	via	the	'/etc/hosts'	file.	Lastly,	you've
enabled	the	cache	DNS	and	DHCP	server	via	the	Dnsmasq.

In	the	next	steps,	you'll	verify	the	Dnsmsq	server	installation	and	configuration.

Verify	Dnsmasq	Installation
With	the	Dnsmasq	configuration	is	finished,	you'll	now	verify	the	Dnsmasq	service	itself.	You'll	verify	the	Dnsmasq	to
ensure	it's	running	on	the	default	port	50	and	the	service	is	running.	Then,	you'll	verify	the	local	domain	name	and	sub-
domains	you	created	via	the	'dns-utils'	package.

Run	the	below	command	to	verify	the	open	port	on	your	system.	Then	verify	the	'dnsmasq'	service	via	the	systemctl
command	utility.

ss	-tulpn	|	grep	53
sudo	systemctl	status	dnsmasq

You'll	receive	the	output	like	this	-	The	Dnsmasq	is	running	on	the	default	port	53	and	the	service	status	is	currently
running.	Also,	it's	enabled,	which	will	start	automatically	upon	the	bootup.

Next,	run	the	below	dnf	command	to	install	the	'bind-utils'	package	to	your	Rocky	Linux	server.	This	package	provides
multiple	command-line	tools	for	testing	and	troubleshooting	DNS	Server.

sudo	dnf	install	bind-utils

Input	y	when	prompted	and	press	ENTER	to	proceed.

Now	run	the	below	dig	command	to	verify	the	domain	name	for	the	Dnsmasq	server	'hwdomain.io'.	You	should	see
that	the	'hwdomain.io'	is	pointed	to	the	server	IP	address	'192.168.5.50'.

dig	hwdomain.io

Lastly,	run	the	below	command	to	verify	the	sub-domains	that	you've	defined	via	the	'/etc/hosts'	file.

dig	wiki.hwdomain.io	+short
dig	mysql.hwdomain.io	+short
dig	files.hwdomain.io	+short

You'll	receive	the	output	similar	to	this	-	The	sub-domain	wiki.hwdomain.io	is	pointed	to	the	IP	address	192.168.5.10,
the	sub-domain	mysql.hwdomain.io	is	pointed	to	the	IP	address	192.168.5.25,	and	lastly	the	sub-domain
files.hwdomain.io	is	pointed	to	the	server	IP	address	192.168.5.30.

With	these	results	in	place,	you've	finished	the	configuration	of	Dnsmasq	as	the	local	DNS	Server.	In	the	next	steps,
you'll	secure	the	DNS	port	via	the	Firewalld.

Setting	up	Firewalld
In	this	step,	you'll	set	up	the	firewalld	to	open	the	DNS	service	port	and	add	the	internal	networks	IP	addresses	to	the
firewalld	as	the	main	source	that	allowed	to	access	the	DNS	service	port.

Run	the	below	firewall-cmd	command	to	add	the	DNS	service	to	the	firewalld.	Then,	add	the	internal	network	IP
addresses	as	the	source.

sudo	firewall-cmd	--add-service=dns
sudo	firewall-cmd	--add-source=192.168.5.0/24

Next,	run	the	below	command	to	save	the	temporary	rules	that	you	have	created	and	reload	the	firewalld	to	apply	the
changes.

sudo	firewall-cmd	--runtime-to-permanent
sudo	firewall-cmd	--reload

Verify	the	firewalld	via	the	following	command.	You	should	see	that	the	DNS	service	is	added	to	the	firewalld	and	the
source	IP	address	of	the	network	is	also	added	to	the	firewalld.

sudo	firewall-cmd	--list-all

Output:

Setting	up	Client	(Debian-based	or	RHEL-based)
In	this	step,	you'll	learn	how	to	set	up	both	Debian-based	and	RHEL-based	distributions	to	use	the	local	DNS	Server
that	you've	created	via	Dnsmasq.

For	RHEL-Based	Distributions

Add	a	new	config	file	for	NetworkManager	'/etc/NetworkManager/conf.d/dns-servers.conf'	using	the	below	nano	editor
command.

sudo	nano	/etc/NetworkManager/conf.d/dns-servers.conf

Add	the	following	lines	to	the	file,	and	ensure	to	change	the	IP	address	with	the	Dnsmasq	service	IP	address.	With	this
configuration,	you'll	set	up	the	default	DNS	resolver	for	the	client	by	using	the	Dnsmasq	server	IP	address.	This	will
automatically	write	the	DNS	resolver	configuration	'/etc/resolv.conf'.

[global-dns-domain-*]
servers=192.168.5.50

Save	the	file	and	exit	the	editor	when	finished.

Next,	run	the	below	systemctl	command	to	restart	the	NetworkManager	service	and	apply	the	changes.

sudo	systemctl	restart	NetworkManager

You	can	show	the	'/etc/resolv.conf'	file	to	verify	the	settings.	You	should	see	the	default	name	server	is	the	local
Dnsmasq	server	IP	address	192.168.5.50.

cat	/etc/resolv.conf

Next,	run	the	below	dnf	command	to	install	the	'bind-utils'	package	to	your	system.

sudo	dnf	install	bind-utils

For	Debian-Based	Distributions

If	you're	using	the	Debian-based	operating	system,	you	can	set	up	the	DNS	resolver	manually	and	disable	the	'systemd-
resolved'	service	on	your	system	-	especially	for	the	Ubuntu	system.

Run	the	below	command	to	stop	and	disable	the	systemd-resolved	service.

sudo	systemctl	disable	--now	systemd-resolved

Now	run	the	below	command	to	remove	the	symlink	file	of	the	DNS	resolver	configuration	'/etc/resolv.conf'.	Then,
create	a	new	resolver	config	file	'/etc/resolv.conf'	via	the	nano	editor	command	below.

unlink	/etc/resolv.conf
sudo	nano	/etc/resolv.conf

Add	the	following	line	to	the	file	and	change	the	IP	address	with	your	Dnsmasq	server	IP	address.

nameserver	192.168.5.50

Save	the	file	and	exit	the	editor	when	finished.

Next,	run	the	below	apt	command	to	install	the	'dnsutils'	package	to	your	system.

sudo	apt	install	dnsutils

Once	the	'bind-utils'	or	'dns-utils'	is	installed,	you	can	verify	your	Dnsmasq's	configuration	via	the	dig	command.

Verify	the	domain	name	of	the	Dnsmasq	server	'hwdomain.io'	via	the	dig	command	below.	You	should	see	that	the
domain	'hwdomain.io'	is	pointed	to	the	Dnsmasq	server	IP	address	192.168.5.50.

dig	hwdomain.io

Next,	verify	the	sub-domains	that	you've	configured	via	the	'/etc/hosts'	file	using	the	below	command.	You	should	see
that	each	sub-domain	is	pointed	to	the	specific	IP	address	that	you've	configured	on	the	'/etc/hosts'	file.

dig	wiki.hwdomain.io	+short
dig	mysql.hwdomain.io	+short
dig	files.hwdomain.io	+short

You'll	receive	the	output	like	this	-	The	sub-domain	wiki.hwdomain.io	is	pointed	to	the	IP	address	192.168.5.10,	the
sub-domain	mysql.hwdomain.io	is	pointed	to	the	IP	address	192.168.5.25,	and	lastly,	the	sub-domain
files.hwdomain.io	is	pointed	to	the	server	IP	address	192.168.5.30.

With	this,	the	local	domain	name	and	sub-domains	is	configured	successfully.	Now,	how	about	public	domain	names
such	as	Github.com,	etc?

Run	the	below	command	to	verify	internet	domain	names	from	your	client	machine.	This	will	ensure	that	you	can
connect	to	the	internet,	even	with	the	local	DNS	resolved	on	the	Dnsmasq	server.

dig	github.com

You'll	receive	the	output	similar	to	this	-	The	dig	query	to	github.com	is	connected	via	the	local	DNS	Server	that	runs	on
the	IP	address	192.168.5.50	with	the	default	port	53.

Lastly,	verify	the	DNS	cache	settings	via	the	dig	command	below.	This	will	show	you	the	executed	query's	stats,
including	the	'Query	time'	to	the	target	domain	name.

dig	+noall	+stats	duckduckgo.com
dig	+noall	+stats	duckduckgo.com

You'll	then	receive	the	output	similar	to	this	-	The	first	query	you	get	is	the	'Query	time'	in	63ms.	But	for	the	second
and	third	queries,	the	Query	Time	is	2ms,	which	means	your	queries	to	the	same	domain	name	is	cached	via	the
Dnsmasq	local	DNS	Server.

Conclusion
In	this	tutorial,	you	have	created	your	own	local	DNS	Server	with	Dnsmasq.	You've	set	up	your	own	DNS	Server	for
your	local	environment	with	the	Dnmasq	on	a	Rocky	Linux	9	server.	Also,	this	included	the	configuration	of	Dnsmasq
with	local	domain	names	and	sub-domains,	enabled	the	DNS	cache	to	get	faster,	and	also	enabled	the	DHCP	Server	via
the	Dnsmasq.

Lastly,	you've	also	added	and	configured	client	machines	(Debian-based	and	RHEL-based	distributions)	to	use	the	local
DNS	Server	that	you've	created.	Within	this,	you've	also	learned	how	to	troubleshoot	the	DNS	Server	with	the	dig
command	and	how	to	set	up	a	DNS	resolver	on	a	Linux	system.

